Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds

نویسندگان

  • Hongyi Zhang
  • Sashank J. Reddi
  • Suvrit Sra
چکیده

We study optimization of finite sums of geodesically smooth functions on Riemannian manifolds. Although variance reduction techniques for optimizing finite-sums have witnessed tremendous attention in the recent years, existing work is limited to vector space problems. We introduce Riemannian SVRG (RSVRG), a new variance reduced Riemannian optimization method. We analyze RSVRG for both geodesically convex and nonconvex (smooth) functions. Our analysis reveals that RSVRG inherits advantages of the usual SVRG method, but with factors depending on curvature of the manifold that influence its convergence. To our knowledge, RSVRG is the first provably fast stochastic Riemannian method. Moreover, our paper presents the first non-asymptotic complexity analysis (novel even for the batch setting) for nonconvex Riemannian optimization. Our results have several implications; for instance, they offer a Riemannian perspective on variance reduced PCA, which promises a short, transparent convergence analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Algorithm for Matrix Eigen-decompositionn

We propose a fast stochastic Riemannian gradient eigensolver for a real and symmetric matrix, and prove its local, eigengap-dependent and linear convergence. The fast convergence is brought by deploying the variance reduction technique which was originally developed for the Euclidean strongly convex problems. In this paper, this technique is generalized to Riemannian manifolds for solving the g...

متن کامل

Stochastic Variance Reduced Riemannian Eigensolver

We study the stochastic Riemannian gradient algorithm for matrix eigendecomposition. The state-of-the-art stochastic Riemannian algorithm requires the learning rate to decay to zero and thus suffers from slow convergence and suboptimal solutions. In this paper, we address this issue by deploying the variance reduction (VR) technique of stochastic gradient descent (SGD). The technique was origin...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Accelerated Stochastic Quasi-Newton Optimization on Riemann Manifolds

We propose an L-BFGS optimization algorithm on Riemannian manifolds using minibatched stochastic variance reduction techniques for fast convergence with constant step sizes, without resorting to linesearch methods designed to satisfy Wolfe conditions. We provide a new convergence proof for strongly convex functions without using curvature conditions on the manifold, as well as a convergence dis...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016